Tag Archive for: Sustainability

written by MEC Greater Kansas Clean Cities coordinator Jenna Znamenak

This article chronicles recent efforts by Metropolitan Energy Center (MEC) and its Clean Cities Coalitions to make electric vehicle operations a reality in areas that are often left out of new connectivity trends. 

To a person who has always lived in a highly populated city, connectivity is a daily reality. Cities get the fastest internet, the most cell coverage, and more nicely paved trafficways. But for the 20% of the population of the United States who live in rural areas, equal connectivity has never been the norm. 

As reported in the January/February issue of the Kansas Government Journal by Mike Scanlon, City Manager of Osawatomie, Kansas, “It is no secret that rural communities are historically left behind when the United States adopts the latest technology.” And in recent months, more rural leaders are seeing a potential pitfall that could widen the access gap for their communities: the advancement of electric vehicles (EVs). 

As the latest consumer-use scenarios are analyzed and early-adopter reviews roll in, the reality is clear: EVs cost less money to fuel and to maintain than their gasoline-fueled counterparts. And with the recent monumental increases in grants and tax incentives for EV purchases, governments are becoming much more interested in EV funding pipelines than they are in vehicles fueled by oil pipelines. But urban and suburban governments are making the switch much faster than rural governments. 

Scanlon is not surprised, but he is hopeful that this time rural America can keep up with the trend. “By 2030 the federal government proposed that half of all new cars sold in the U.S. will be zero-emission vehicles, with 50,000 electric charging networks. By proactively supporting rural EV development now, we can prevent history from repeating itself.” His article in the Kansas Government Journal, co-written with MEC’s Central Kansas Clean Cities Coalition coordinator Jenna Znamenak, prepares rural leaders with real facts and funding connections so they can stay in the fight to stay connected. 

The most exciting grants on the list are the ones that get rid of nitrous-oxide-producing diesel school buses by helping school districts convert to EVs, for little to no cost to the schools. “These grants replace older school buses with electric school buses to reduce harmful emissions around children,” says Central Kansas Clean Cities coordinator Jenna Znamenak. But she says there are enough programs available through MEC’s grant assistance to help more institutions than just schools involved with the national sea-change. 

For many rural leaders, adapting to standardizing trends sounds like “small budgets with not much room for experimentation, time constraints that do not allow us the ability to learn about technology, and grant opportunities that can look like a 10-acre corn maze,” says Scanlon. “That’s why we’re here for you—we’ve helped connect local communities and fleets to easier funding for clean energy for the past 40 years,” says Znamenak, referring to MEC’s stockpile of resource-accessing tricks and their dependable grant assistance services. 

See the original article published in the Kansas Government Journal here

To stay current on all available funding, sign up for MEC’s free newsletter at metroenergy.org/newsletter-sign-up. To talk to an expert about your next clean energy project, call 816-531-7283.

We are funded by readers like you. Even $5 helps expand clean energy access.
Your donation helps scale new technologies—tools that are public-ready, but only utilized by people of moderate affluence at a minimum. Clean-energy technology is a game changer, not only for the planet, but also for small businesses and low-income households. Thank you for helping to broaden clean tech's horizons.

written by Kansas City Regional Clean Cities Coalition director David Albrecht

                It’s probably an overstatement to call propane America’s most overlooked fuel.  That said, it does kind of fly under the radar.   For many of us, our only interaction with it comes when replacing a cylinder for the barbeque grill.  But beyond the bottle cage at Lowe’s, and once you leave the city, propane is ubiquitous.  In America, if you’re in the country, you’re in propane country.  83% of all households that heat with propane are in rural areas.  In the rural Midwest, it’s close to 90%.  Propane is affordable and easy to purchase and use, thanks to a well-developed supplier network.

Part of oil and gas formations, propane is one of the natural gas liquids (NGLs) along with butane, pentane and a few more.  During oil and gas production, NGLs come hissing to the surface, mixed with natural gas.  They’re then separated during refining and sold as feedstocks for plastics, solvents, and (in the case of propane) for heating and fuel.  They are a small slice of the global oil and natural gas market, about 14% of output.  But as fracking has boomed in the past decade, nearly doubling American propane production, more auto manufacturers and fleet managers are taking another look at propane-powered vehicles.

Propane Power

Like any fuel, propane has its pluses and minuses for transportation.  Propane is less energetic than either gasoline or diesel.  You would have to use 1.38 gallons of propane to match the energy of a gallon of gasoline, and 1.52 gallons to equal a gallon of diesel.  The flip side is that propane is cheap – it typically costs about 30% less than gasoline and 50% less than diesel fuel.  It’s also far cleaner than diesel, producing far less in the way of smog-forming chemicals.  This means that many components of diesel emissions control systems – DPF regeneration, diesel oxidation catalyst, selective catalytic reduction, diesel emissions fluid – are eliminated by switching to propane.  Diesel emission controls work, but they also make for complicated, expensive maintenance.

But in the end, there’s still an impact.   Propane is still a fossil fuel, and still part of the big global machine that produces oil and gas, and also pumps ever-more carbon into the atmosphere.  Or at least it was a fossil fuel, until now.

The Renewable Difference

What’s new?  Renewable propane.  It’s chemically identical to fossil propane, but produces between 60% and 70% less carbon when used.

Renewable propane and diesel have some things in common with biodiesel.  All three can be made from the same renewable feedstocks, like corn oil, soybean oil, tallow and waste grease.  But the methods to produce these fuels are very different.  You can make biodiesel at low temperatures and at small scale, in laboratories or classrooms – there’s even a user’s guide for high school students interested in biodiesel.  But renewable diesel and renewable propane come from refineries, produced by some of the same processes as fossil fuels.  They’re chemically identical to their petroleum versions, and have the same properties.

As a clean-burning, low-carbon fuel produced from renewable feedstocks, there’s a lot to like about renewable propane.  This is especially true in major markets like California.  There, tough clean air standards give cleaner-burning fuel an edge over conventional options, and clean fuel credits can sweeten the financial picture for users.  Today renewable propane only accounts for somewhere between 1% and 2% of all propane output.  But prospects for rapid growth of this lower-carbon and completely renewable energy source seem bright.

We are funded by readers like you. Even $5 helps expand clean energy access.
Your donation helps scale new technologies—tools that are public-ready, but only utilized by people of moderate affluence at a minimum. Clean-energy technology is a game changer, not only for the planet, but also for small businesses and low-income households. Thank you for helping to broaden clean tech's horizons.